Hauptmenü öffnen

Übertrager (auch Einphasentransformator[1]) ist ein induktives Bauteil der Nachrichtentechnik. Ähnlich einem Transformator aufgebaut, unterscheidet er sich in seiner meist Primär und Sekundär gleichen Wicklungszahl und seiner Anwendung ausschließlich zur leistungslosen Signalübertragung.

Transformatoren sind für die Leistungsübertragung mit möglichst hohem Wirkungsgrad optimiert und erreichen meist nur bei einer einzigen Frequenz oder in einem schmalen Frequenzband die gewünschte Effizienz (z. B. bei 50 Hz und/oder 60 Hz). Im Gegensatz dazu dienen Übertrager zur relativ breitbandigen Informationsübertragung mit möglichst hoher Signalqualität. Je nach Einsatzbereich werden Übertrager spezifisch benannt, z. B. als Audioübertrager oder Symmetrierübertrager im Bereich der Audiotechnik, als Anpassungsübertrager im Bereich der Audio- und HF-Technik oder als Impulsübertrager im Bereich der Digitaltechnik. Hier sind auch die Bezeichnungen Impulstransformator oder Pulstransformator gängig, da diese speziellen Übertrager meist ähnlich wie Transformatoren nur für einen relativ schmalen Frequenzbereich optimiert sind.

Inhaltsverzeichnis

GrundlagenBearbeiten

Beide Arten von Transformatoren (zur Leistungs- und Signalübertragung) funktionieren nach den gleichen Prinzipien, jedoch erfüllen sie unterschiedliche Aufgaben und unterscheiden sich in ihrer Konstruktion. Beim Transformator zur Leistungsübertragung kommt es primär auf die Effizienz (Wirkungsgrad) an, beim Übertrager jedoch auf den möglichst guten Erhalt der Signalform. Wichtige Eigenschaften eines Übertragers für analoge Anwendungen sind u. a. seine Linearität und möglichst geringe Verzerrungen. In der englischen Sprache wird mit einem Präfix zwischen Übertrager und Transformator unterschieden; Übertrager, die in der Audiotechnik verwendet werden, heißen audio transformer. Für digitale Signalübertragung wie beispielsweise bei Ethernet-Schnittstellen wird im Englischen die Bezeichnung pulse transformer verwendet, im Deutschen Impulsübertrager.

EinsatzbereicheBearbeiten

 
SMD-Übertrager vom Typ TG110, wie sie bei Ethernet-Schnittstellen verwendet werden. Bauelement von oben (links) und von unten (rechts)
 
Übertrager im Ethernet-Anschluss eingebaut

Übertrager werden u. a. eingesetzt:

BauformenBearbeiten

 
Übertrager mit Schalenkern

Die Bauformen gleichen im Prinzip denjenigen von Transformatoren zur Leistungsübertragung.

Teilweise angewendete Besonderheiten sind:

  • Die Wicklungen sind bifilar oder trifilar ausgeführt (ineinander verschachtelt), um die Streuinduktivität klein zu halten (Steigerung der oberen Grenzfrequenz)
  • Es werden hochpermeable Kernmaterialien verwendet (Mu-Metall, hochpermeable Ferrite), um die untere Grenzfrequenz gering zu halten.

Für Hochfrequenzübertrager sind Ferritkerne für hohe Frequenzen erforderlich. Oft verwendet man ab dem UKW-Frequenzbereich Doppellochkerne.

Weitere typische Kernformen sind Ferrit-Ringkerne und -Schalenkerne.

Bei hohen Frequenzen – ab den höheren Kurzwellenfrequenzen –, wird für die Spulen oft kein Kern aus ferromagnetischem Material verwendet. Solche Übertrager bestehen aus zwei Luftspulen, die entweder ineinander geschachtelt oder axial aneinandergesetzt sind. Bei letzterer Bauform gibt es auch Ausführungen, bei denen die zweite Spule verdrehbar angeordnet ist, z. B. um die Kopplung der beiden Spulen an den Scheinwiderstand der Antenne eines Detektorempfängers oder Rundfunksenders anzupassen.

Die beiden „Wicklungen“ können bei noch höheren Frequenzen auch lediglich aus einem parallelen Drahtpaar (mit und ohne Kern) bestehen.

In Übertragern eingesetzte Biaxial orientierte Polyester-Folie isoliert je Ausführung zwischen 1,3 und 3,6 kV und nur bis 130 °C resistent. Bei 5 kV Isolationsfestigkeit werden durchaus drei Schichten übereinander geklebt. Bei Übertragern in Schaltnetzteilen kann auf eine Thermosicherung verzichtet werden, da der Leitungswiderstand bei Kurzschluss nicht anpasst und erhitzt, sondern die vorgeschaltete Schmelzsicherung auslöst. Solche Übertrager haben lediglich 19 bis 40 Windungen entsprechender Drahtstärke aufgewickelt.

TheorieBearbeiten

Sehr wichtige Eigenschaften von Übertragern sind ihre Strom- und Spannungs-Übersetzungsverhältnisse:[2]

 
 

mit

  = Spulenwindungszahl der Primärwicklung
  = Windungszahl der Sekundärwicklung
  und   sind die Primär- und Sekundärspannung und   und   die Primär- und Sekundärstromstärke.

Das Verhältnis zwischen Primär- und Sekundär-Impedanz kann aus dem Quadrat des Übersetzungsverhältnisses (Windungszahlverhältnis) des Übertragers errechnet werden:

 

oder

 

Das für eine Impedanztransformation erforderliche Übersetzungsverhältnis kann folglich so berechnet werden:

 
 
 

oder

 

Eine wichtige Größe vieler Signalübertrager ist das Produkt aus Zeit und Spannung, bis der Kern in Sättigung gerät. Es bestimmt die untere Übertragungs-Frequenzgrenze bzw. die Länge eines Rechtecksignales, das bei gegebener Spannung noch übertragen werden kann. Das Spannungs-Zeit-Produkt U · t (Einheit Voltsekunde) errechnet sich aus der Induktivität L und dem Sättigungsstrom Isat:

 

Während eines Rechteckimpulses   steigt der Strom linear an. Erreicht er den Sättigungswert, bricht die Spannung zusammen und das Rechtecksignal wird in seiner Form verfälscht. Aus diesem Grund verwendet man für die Übertragung digitaler Signale (z. B. zur Ansteuerung von Leistungs-MOSFET) Kernmaterialien mit einer hohen Permeabilitätszahl.

Siehe auchBearbeiten

WeblinksBearbeiten

  Commons: Übertrager – Sammlung von Bildern, Videos und Audiodateien

EinzelnachweiseBearbeiten

  1. In: Elektrotechnik. Tabellen Kommunikationselektronik. Formelsammlung. Westermann Schulbuchverlag, 3. Auflage 2002. Seite 57
  2. Ing: GdE: Modelle des Transformators auf Wikibooks