Partielle Integration

Möglichkeit zur Berechnung bestimmter Integrale

Die partielle Integration (teilweise Integration, Integration durch Teile, lat. integratio per partes), auch Produktintegration genannt, ist in der Integralrechnung eine Möglichkeit zur Berechnung bestimmter Integrale und zur Bestimmung von Stammfunktionen. Sie kann als Analogon zur Produktregel der Differentialrechnung aufgefasst werden. Der Gaußsche Integralsatz aus der Vektoranalysis mit einigen seiner Spezialfälle ist eine Verallgemeinerung der partiellen Integration für Funktionen mehrerer Variablen.

Regel der partiellen Integration Bearbeiten

Ist   ein Intervall und sind   zwei stetig differenzierbare Funktionen auf  , dann gilt

 

Diese Regel wird partielle Integration genannt.[1] Ihren Namen hat sie erhalten, weil bei ihrer Anwendung nur ein Teil des Integrals auf der linken Seite des Gleichheitszeichens bestimmt wird, nämlich  , und der zweite Ausdruck, nämlich  , noch ein Integral beinhaltet. Diese Regel ist daher dann sinnvoll anzuwenden, wenn eine Stammfunktion zu   bekannt, beziehungsweise leicht zu berechnen ist, und wenn der Integralausdruck auf der rechten Seite einfacher zu berechnen ist.[2]

Beispiel Bearbeiten

Als Beispiel wird das Integral

 

betrachtet, wobei   die natürliche Exponentialfunktion ist. Setzt man   und  , so erhält man

  und  .

Mit partieller Integration folgt dann

 

Weitere Beispiele sind im Abschnitt Unbestimmte Integrale und partielle Integration dieses Artikels zu finden. Im Unterschied zu diesem Beispiel werden dort nur unbestimmte Integrale berechnet. Das heißt, dass an den Integralen keine Grenzen stehen, die dann, wie hier im Beispiel geschehen, im letzten Schritt in die Funktion eingesetzt werden.

Geschichte Bearbeiten

Eine geometrische Form der Regel der partiellen Integration findet sich schon in Blaise Pascals Arbeit Traité des Trilignes Rectangles et de leurs Onglets (Abhandlung über Kurvendreiecke und ihre ‚adjungierten Körper‘), die 1658 als Teil des Lettre de A. Dettonville à M. Carcavy erschien. Da zu jener Zeit der Integralbegriff noch nicht geprägt war, wurde diese Regel nicht mittels Integralen, sondern durch Summation von Infinitesimalen beschrieben.[3]

Gottfried Wilhelm Leibniz, der zusammen mit Isaac Newton als der Erfinder der Differential- und Integralrechnung gilt, bewies die in moderner Notation lautende Aussage

 

Sie ist ein Spezialfall der Regel zur partiellen Integration. Leibniz nannte diese Regel Transmutationstheorem und teilte sie Newton in seinem Brief mit, den er als Antwort auf die epistola prior, den ersten Brief Newtons, nach England schickte. Mithilfe dieses Theorems untersuchte Leibniz den Flächeninhalt eines Kreises und konnte die Formel

 

beweisen. Sie wird heute Leibniz-Reihe genannt.[4]

Unbestimmte Integrale und partielle Integration Bearbeiten

Die partielle Integration kann auch dafür verwendet werden, um unbestimmte Integrale zu berechnen – also um Stammfunktionen zu bestimmen. Dazu werden in der Regel zur partiellen Integration die Integralgrenzen gestrichen, daher muss nun die Integrationskonstante addiert werden.

Regel Bearbeiten

Sind   und   zwei stetig differenzierbare Funktionen und ist eine Stammfunktion von   bekannt, dann kann mit der Regel zur partiellen Integration

 

eine Stammfunktion zu   gefunden werden.

Beispiele Bearbeiten

In diesem Abschnitt wird an zwei Beispielen aufgezeigt, wie mit Hilfe der partiellen Integration eine Stammfunktion ermittelt wird. Im ersten Beispiel wird keine Stammfunktion bestimmt. Dieses Beispiel zeigt auf, dass beim Bestimmen einer Stammfunktion mit der partiellen Integration auch auf die Integrationskonstante geachtet werden muss. Im zweiten Beispiel wird die Stammfunktion des Logarithmus und im dritten Beispiel wird eine Stammfunktion zu einer gebrochenrationalen Funktion bestimmt.

Kehrwertfunktion Bearbeiten

In diesem Beispiel wird das unbestimmte Integral von   betrachtet und partiell integriert. Obgleich nicht hilfreich zur konkreten Bestimmung der Stammfunktion von  , verdeutlicht es doch, dass schließlich noch die Integrationskonstante addiert werden muss. Es gilt

 

Im Sinne unbestimmter Integrale ist diese Gleichung richtig, denn die Funktionen   und   sind beide Stammfunktionen der Funktion  . Würde man diesen Ausdruck als bestimmtes Integral mit den Grenzen   betrachten, so würde der mittlere (der integralfreie) Term wegfallen, denn es gilt

 .

Logarithmusfunktion Bearbeiten

Steht nur ein Term im Integrand, auf dessen Stammfunktion ohne Tabellenwert nicht ohne weiteres zu schließen ist, kann man gelegentlich durch Einfügen des Faktors   partiell integrieren. Dies funktioniert beispielsweise bei der Logarithmusfunktion  . Um eine Stammfunktion von   zu bestimmen, wird bei der partiellen Integration der Logarithmus differenziert und von der Eins-Funktion eine Stammfunktion gebildet. Es gilt also[5]

 

Produkt von Sinus- und Kosinusfunktion Bearbeiten

Manchmal kann man es sich zunutze machen, dass nach mehreren Schritten der partiellen Integration das ursprüngliche Integral auf der rechten Seite des Gleichheitszeichens wiederkehrt, welches man dann durch Äquivalenzumformung mit dem ursprünglichen Integral auf der linken Seite zusammenfassen kann.

Als Beispiel wird das unbestimmte Integral

 

berechnet. Mit   und   ergibt sich

  und  

und man erhält

 .

Addiert man auf beiden Seiten der Gleichung das Ausgangsintegral, folgt

  .

Wird nun auf beiden Seiten durch 2 dividiert, so ergibt sich

 

und man hat eine Stammfunktion gefunden. Alle Stammfunktionen sind daher von der Form

 .

Vertauscht man bei der partiellen Integration die Rollen von   und  , so erhält man auf analoge Weise

 ,

was man auch durch Einsetzen von   in die zuerst gefundene Formel erhält. Man kann daher mit gleicher Berechtigung sowohl   als auch   als Stammfunktion angeben, beide unterscheiden sich nur durch eine Konstante.

Produkt von Polynom- und Exponentialfunktion Bearbeiten

Bei manchen unbestimmten Integralen bietet es sich an, für   einen Term zu wählen, der sich bei der Integration nicht oder nur unwesentlich verändert, beispielsweise die natürliche Exponentialfunktion oder die trigonometrischen Funktionen.

Als Beispiel wird das unbestimmte Integral

 

betrachtet. Setzt man bei jedem partiellen Integrationsschritt   und für   den übrigen Term unter dem Integral, so ergibt sich

 

Beweis Bearbeiten

Seien   und   zwei stetig differenzierbare Funktionen auf dem Intervall  . Nach der Produktregel der Differentialrechnung gilt

 

das heißt   ist eine Stammfunktion der stetigen Funktion   auf  . Mit dem Hauptsatz der Differential- und Integralrechnung folgt

 

Mit der Linearität des Integrals erhält man hieraus

 

woraus die Regel der partiellen Integration durch Subtraktion des Integrals   auf beiden Seiten folgt.

Partielle Integration mithilfe einer Tabelle (DI-Methode) Bearbeiten

Möchte man unbestimmte Integrale mithilfe partieller Integration bestimmen, so kann man dafür mit einer Tabelle arbeiten.[6] Dabei schreibt man in die linke Spalte die Ableitungen von   und in die rechte Spalte Stammfunktionen von  , bis eine der folgenden drei Bedingungen erfüllt ist:

  1. Eine Ableitung ist Null,
  2. das unbestimmte Integral einer Zeile (das Produkt der zugehörigen Zellen) ist bekannt oder
  3. eine Zeile wiederholt sich

Fall 1: Eine Ableitung ist Null Bearbeiten

Beispiel:  

Da   einfacher zu integrieren ist als  , wählen wir

 .

Jetzt können wir die Tabelle aufstellen

Vorzeichen D (für Differenziation) I (für Integration)
+    
-    
+    
-    

Die vierte Zeile hat eine Null als Ableitung, d. h. wir können die Tabelle nach vier Zeilen beenden. Um das unbestimmte Integral zu berechnen, müssen wir mit Beachtung der Vorzeichen die einzelnen Zellen diagonal multiplizieren

 

 

Fall 2: Eine Zeile kann integriert werden Bearbeiten

Beispiel:  

In diesem Fall ist es einfacher, das Polynom zu integrieren, daher wählen wir

 

Vorzeichen D I
+    
-    
+    

Wir müssen wieder diagonal multiplizieren

 

Wir können eine Stammfunktion für den zu integrierenden Teil berechnen

 

und das Ergebnis zusammenfassen

 

Fall 3: Eine Zeile wiederholt sich Bearbeiten

Beispiel:  

Wir wählen

 
Vorzeichen D I
+    
-    
+    

Die dritte Zeile entspricht im Wesentlichen der ersten Zeile, bloß dass in der Spalte D ein anderes Vorzeichen steht.

Wir müssen eine Gleichung aufstellen

 

und nach   umstellen

 .

Partielle Integration mit nur einer Funktion (Fall 2) Bearbeiten

Beispiel:  

Wir wählen

 ,  
Vorzeichen D I
+    
-    

Die zweite Zeile lässt sich hier gemäß Fall 2 integrieren und wir können berechnen

 .

Summendarstellung Bearbeiten

Verschwindet die  -te Ableitung einer Funktion  , d. h.   ist ein Polynom vom Grad  , so lässt sich die wiederholte partielle Integration, bzw. die DI-Methode wie folgt schreiben:

 ,

wobei   eine  -te Stammfunktion von   bezeichnet.

Beispiel:

 

Das Integral verschwindet im Unendlichen, und bei 0 nur im Fall   nicht:

 

Partielle Integration bei uneigentlichen Integralen Bearbeiten

Die Regel der partiellen Integration lässt sich unter bestimmten Voraussetzungen auf Integrationsbereiche mit kritischer Grenze übertragen: Seien   und   stetig differenzierbare Funktionen auf   und der Grenzwert   existiere. Konvergiert das (ggf. uneigentliche) Integral  , so auch   und es gilt

 

Beispiel Bearbeiten

Als Beispiel wird

 

betrachtet. Setzt man   und  , so sind   und   stetig differenzierbare Funktionen auf   und es ist   Mit der Regel der partiellen Integration folgt

 

Mehrdimensionale partielle Integration Bearbeiten

Die partielle Integration in mehreren Dimensionen ist ein Sonderfall des Gaußschen Integralsatzes: Sei   kompakt mit abschnittsweise glattem Rand  . Der Rand sei orientiert durch ein äußeres Normalen-Einheitsfeld  . Sei ferner   ein stetig differenzierbares Vektorfeld auf einer offenen Umgebung von   und   ein stetig differenzierbares Skalarfeld auf  . Dann gilt

 

mit der Abkürzung  . Dann folgt die Verallgemeinerung der partiellen Integration in mehreren Dimensionen

 .

Regel der partiellen Integration für Stieltjesintegrale Bearbeiten

Es seien   und   zwei Funktionen von finiter Variation, dann gilt

 

bzw. anders geschrieben

 .

Schwache Ableitung Bearbeiten

In der Theorie der partiellen Differentialgleichungen wurde mittels der Methode der partiellen Integration eine Verallgemeinerung der Ableitung einer differenzierbaren Funktion gefunden.

Betrachtet man eine auf einem offenen Intervall   (klassisch) differenzierbare Funktion   und eine beliebig oft differenzierbare Funktion   mit kompaktem Träger in  , dann gilt

 .

Hierbei wurde die partielle Integration eingesetzt. Der Randterm, also der Term ohne Integral, fehlt, da die Funktion   eben einen kompakten Träger hat und daher   und   gilt.

Wird die Funktion   nun als eine  -Funktion gewählt, dann kann, selbst wenn   nicht differenzierbar ist (genauer: keinen differenzierbaren Vertreter in der Äquivalenzklasse besitzt), eine Funktion   existieren, die die Gleichung

 

für jede Funktion   erfüllt. Eine solche Funktion   heißt schwache Ableitung von  . Die so entstehende Menge von schwach differenzierbaren  -Funktionen ist ein Vektorraum und er gehört zur Klasse der Sobolev-Räume. Die glatten Funktionen mit kompaktem Träger, deren Vektorraum mit   bezeichnet wird, heißen Testfunktionen.

Existiert jedoch keine Funktion   mit der geforderten Bedingung, so kann immer eine Distribution   gefunden werden, so dass obige Bedingung im Distributionensinn erfüllt ist. Dann heißt   die Distributionenableitung von  .

Siehe auch Bearbeiten

Weblinks Bearbeiten

Einzelnachweise Bearbeiten

  1. Konrad Königsberger: Analysis 1. Springer-Verlag, Berlin u. a., 2004, ISBN 3-540-41282-4, S. 202.
  2. Yvonne Stry: Mathematik kompakt: für Ingenieure und Informatiker. 3., bearb. Auflage, Springer-Verlag, 2010, ISBN 3642111912, S. 314.
  3. Thomas Sonar: 3000 Jahre Analysis, Springer, Berlin 2011, ISBN 978-3-642-17203-8, S. 273.
  4. Thomas Sonar: 3000 Jahre Analysis, Springer, Berlin 2011, ISBN 978-3-642-17203-8, S. 418–421.
  5. Otto Forster: Analysis Band 1: Differential- und Integralrechnung einer Veränderlichen. Vieweg-Verlag, 8. Aufl. 2006, ISBN 3-528-67224-2, S. 210.
  6. Mark Zegarelli: Analysis II für Dummies. Weinheim 2009, ISBN 978-3-527-70509-2, S. 152.