Der Ornstein-Uhlenbeck-Prozess (oft abgekürzt OU-Prozess oder noch kürzer O-U) ist ein spezieller stochastischer Prozess, welcher nach den beiden niederländischen Physikern George Uhlenbeck (1900–1988) und Leonard Ornstein (1880–1941) benannt ist. Er ist neben der geometrischen Brownschen Bewegung einer der einfachsten und gleichzeitig wichtigsten über eine stochastische Differentialgleichung definierten Prozesse. Im Vasicek-Modell zur Zinssatzmodellierung werden Ornstein-Uhlenbeck-Prozesse verwendet.

Fünf Pfade von unterschiedlichen Ornstein-Uhlenbeck-Prozessen mit σ=1, θ=1, μ=0.

Definition und Parameter Bearbeiten

Seien   und   Konstanten. Ein stochastischer Prozess   heißt Ornstein-Uhlenbeck-Prozess mit Anfangswert  , Gleichgewichtsniveau  , Steifigkeit   und Diffusion  , wenn er das folgende stochastische Anfangswertproblem löst:

 ,

wobei   ein Standard-Wienerprozess ist.

Die Parameter lassen sich einfach interpretieren und somit bei der Modellierung einer stochastischen Zeitreihe einfach als „Stellschrauben“ verwenden:

  •   ist das gleichgewichtige Niveau des Prozesses (englisch: mean reversion level). Liegt   über diesem Wert, so ist der Driftterm   negativ, und die Drift wird den Prozess tendenziell nach unten „ziehen“. Ist   kleiner, so ist die Drift positiv und der Prozess wird in Erwartung nach oben gezogen.
  •   (englisch mean reversion speed oder mean reversion rate) gibt an, wie stark die oben beschriebene „Anziehungskraft“ von   ist. Für kleine Werte von   verschwindet dieser Effekt, für große Werte wird sich   sehr steif um   entwickeln.
  •   gibt an, wie stark der Einfluss von   (also des Zufalls) auf den Prozess ist. Für   wird   einfach exponentiell gegen   konvergieren, bei starker Diffusion wird diese Konvergenz zufällig gestört.

Der Unterschied zum ebenfalls mit dem mean-reversion-Mechanismus ausgestatteten Wurzel-Diffusionsprozess oder der geometrischen Brownschen Bewegung besteht im Wesentlichen darin, dass beim OU-Prozess der Diffusionsterm   konstant, also unabhängig von   ist. Dies führt dazu, dass der OU-Prozess im Gegensatz zu den anderen beiden auch negative Werte annehmen kann.

Lösung der Differentialgleichung Bearbeiten

Im Gegensatz zum Wurzel-Diffusionsprozess ist die obige Differentialgleichung explizit lösbar, wenn auch nicht (wie bei der geometrischen brownschen Bewegung) integralfrei darstellbar: Mit der Lösung   der zugehörigen homogenen Gleichung   führt Variation der Konstanten auf den Ansatz  , also  . Wendet man auf die Funktion   einerseits die Itō-Formel, andererseits die gewöhnliche Kettenregel der Differentialrechnung an, so erhält man

 .

Die obige Identität von 0 bis   aufintegriert (wobei  ) ergibt die Lösung

 .

Eigenschaften Bearbeiten

 
Vergleich von Wiener-Prozessen (oben) und Ornstein-Uhlenbeck-Prozessen (unten) mit gleicher Diffusion, σ=1.
 
und
 .
Die univariaten Verteilungen der   für   sind Normalverteilungen:
 .
  • Ein Ornstein-Uhlenbeck-Prozess mit nichtstochastischem Anfangswert   besitzt eine konstante Erwartungswertfunktion im Fall  .
  • Ein Ornstein-Uhlenbeck-Prozess mit nichtstochastischem Anfangswert   ist nicht stationär, wie man an der Kovarianzfunktion erkennt, die nicht nur von der Zeitdiffererenz   abhängt. Mit stochastischem Anfangswert existiert ein stationärer Ornstein-Uhlenbeck-Prozess, siehe weiter unten.
  • Ein Ornstein-Uhlenbeck-Prozess entspricht einem Tiefpass-gefilterten weißen Rauschen mit einem linearen IIR-Tiefpassfilter 1. Ordnung mit Grenzfrequenz  .[1] Sein Spektrum ist daher für niedrige Frequenzen flach, wie beim weißen Rauschen, und für hohe Frequenzen proportional zu 1/f², wie beim roten Rauschen. Im Gegensatz zum rein weißen und roten Rauschen ist das Spektrum des Ornstein-Uhlenbeck-Prozess damit quadratintegrierbar, und der Prozess besser als ideales weißes oder rotes Rauschen auf physikalische Situationen anwendbar, die grundsätzlich amplituden-, bandbreiten und leistungslimitiert sind.
  • Ein Ornstein-Uhlenbeck-Prozess entspricht auch einem Hochpass-gefilterten Wiener-Prozess mit einem linearen IIR-Hochpassfilter 1. Ordnung mit Grenzfrequenz   (siehe Abbildung). Dies geht direkt aus der Definition hervor, die zu einem bestehenden Wiener-Prozess den linearen Filterterm   addiert, der tiefe Frequenzkomponenten dämpft. Im Gegensatz zum skaleninvarianten Wiener-Prozess besitzt der Ornstein-Uhlenbeck-Prozess damit eine Zeitskala und ist in dieser Hinsicht komplizierter. Für Zeitskalen deutlich kleiner als 1/θ kann der Ornstein-Uhlenbeck-Prozess jedoch durch den Wiener-Prozess approximiert werden. Es gilt im Sinne der Verteilungskonvergenz[2]
 

Stochastischer Anfangswert und stationärer Ornstein-Uhlenbeck-Prozess Bearbeiten

Ein Ornstein-Uhlenbeck-Prozess mit stochastischen Anfangswert   ist

 .

Erwartungswert- und Kovarianzfunktion Bearbeiten

Ein Ornstein-Uhlenbeck-Prozess mit stochastischen Anfangswert   hat die auf den Anfangswert   bedingte Erwartungswertfunktion

 

und die auf den Anfangswert bedingte Kovarianzfunktion

 

Hieraus ergeben sich mit   die (unbedingte) Erwartungswertfunktion

 

und mit   die (unbedingte) Kovarianzfunktion

 

Die weiter oben angegebenen Erwartungswert- und Kovarianzfunktionen für einen Ornstein-Uhlenbeck-Prozess mit nichtstochastischem Anfangswert   erhält man als Spezialfall für   und  .

Stationarität Bearbeiten

Da ein Ornstein-Uhlenbeck-Prozess ein Gauß-Prozess ist, fallen die Konzepte der Stationarität im engeren Sinn und der Stationarität im weiteren Sinn zusammen.

Für den speziellen stochastischen Startwert   mit

 

erhält man einen stationären Ornstein-Uhlenbeck-Prozess   mit der Erwartungswertfunktion

 

und der Kovarianzfunktion

 

Alle Zufallsvariablen   des stationären Ornstein-Uhlenbeck-Prozess   haben dieselbe univariate Wahrscheinlichkeitsverteilung

 

Stabilität Bearbeiten

Der stationäre Ornstein-Uhlenbeck-Prozess kann durch folgende Stabilitätseigenschaft ergänzt werden. Für jeden Ornstein-Uhlenbeck-Prozess mit nichtstochastischem Startwert   gilt

 

und

 

Da die Verteilungen von Gauß-Prozessen durch ihre Erwartungswert- und Kovarianzfunktion festliegen, bedeutet dies, dass sich alle Ornstein-Uhlenbeck-Prozesse, die mit nichtstochastischem Anfangswert starten, für fortschreitende Zeit dem stationären Ornstein-Uhlenbeck-Prozess mit der Erwartungswertfunktion   und der Kovarianzfunktion   annähern.

Lévy-Prozesse Bearbeiten

 
Pfad eines Cauchy-OU-Prozesses

Wird die definierende Differentialgleichung von einem anderen Lévy-Prozess als der brownschen Bewegung angetrieben, so erhält man auch einen (nicht-gaußschen) Ornstein-Uhlenbeck-Prozess.

Literatur Bearbeiten

  • G. E. Uhlenbeck, L. S. Ornstein: On the Theory of the Brownian Motion. In: Physical Review. 36. Jahrgang, Nr. 5, 1. September 1930, ISSN 0031-899X, S. 823–841, doi:10.1103/PhysRev.36.823 (englisch).
  • Daniel T. Gillespie: Exact numerical simulation of the Ornstein-Uhlenbeck process and its integral. In: Physical Review E. 54. Jahrgang, Nr. 2, 1. August 1996, ISSN 1063-651X, S. 2084–2091, doi:10.1103/PhysRevE.54.2084, PMID 9965289 (englisch).

Einzelnachweise Bearbeiten

  1. Enrico Bibbona, Gianna Panfilo, Patrizia Tavella: The Ornstein–Uhlenbeck process as a model of a low pass filtered white noise. In: Metrologia. 45. Jahrgang, Nr. 6, 5. Dezember 2008, ISSN 0026-1394, S. S117–S126, doi:10.1088/0026-1394/45/6/S17 (englisch).
  2. L. C. G. Rogers and D. Williams: Diffusions, Markov Processes and Martingales. Vol. 1. Cambridge University Press, Cambridge, 2000, S. 54.